TOOLS
 OF THE TRADE

All at equal quality, better pricing, \& in stock in USA

MARCH 2024

TOOL/NG

 Choose The Right

 Choose The Right End Mill For The Job

 End Mill For The Job}

Compare our End Mills with other brands... the biggest difference you'll find is unrivaled value for your money!

		OTHER BRANDS
Quality Material:		
Solid Sub-Micron Micrograin Carbide	\checkmark	\checkmark
Superior Tolerance:		
Ground to a Tolerance of h6	\checkmark	\checkmark
Variety of Finishes:		
Uncoated for Aluminum	\checkmark	\checkmark
Titanium Carbonitride (TiCN) for Aluminum	\checkmark	\checkmark
Uncoated	\checkmark	\checkmark
Titanium Aluminum Nitride (TiAIN)	\checkmark	\checkmark
Aluminum Titanium Nitride (AITiN)	\checkmark	\checkmark
2 to 8-Flutes:		
Available in 2, 3, 4, 5, 6 \& 8-Flutes	\checkmark	\checkmark
Most Common Types:		
Available in Square End, Ball Nose, Corner Radius \& Roughing	\checkmark	\checkmark
Other:		
Stock available in USA \& Canada	\checkmark	\checkmark
Decades of performance	\checkmark	\checkmark
UNRIVALED VALUE FOR YOUR MONEY	\checkmark	X

Carbide End Mills for Aluminum

2-Flute Square End, 40° Helix								
Cutting (in.)		Shank Dia. (in.)	Flute (in	Length .)	Overall Length (in.)		Uncoated Code No.	Price \$
1/4		1/4		/4	2-1/2		101020	15.43
3/8		3/8		1	2-1/2		101028	26.95
1/2		1/2		1	3		101032	43.18
5/8		5/8		1/4	3-1/2		101036	83.26
3/4		3/4		1/2	4		101040	122.08
2-Flute Corner Radius, $35^{\circ} \mathrm{Helix}$							$3-m i$	
Cutting Dia. (in.)	Shank Dia. (in.)	Flute Length (in.)	Overall Length (in.)	Corner Radius	Uncoated Code №.	Price \$	$\$ \quad \begin{gathered} \text { TiCN } \\ \text { Coated } \\ \text { Code No. } \end{gathered}$	Price \$
1/4	1/4	3/4	2-1/2	0.010	153212	15.43	3153404	18.98
3/8	3/8	1	2-1/2	0.015	153216	26.95	5153408	33.15
1/2	1/2	1	3	0.020	153220	43.18	8153412	53.11
5/8	5/8	1-1/4	3-1/2	0.020	153222	83.26	$6 \quad 153414$	102.41
3/4	3/4	1-1/2	4	0.030	153224	122.08	8153416	150.16

End Mills designed specifically for milling aluminum and all non-ferrous materials, made of solid, sub-micron micrograin carbide.
40° helix permits much higher speed and feed rates without chip loading. Spindle and feed rates can be increased by fifty percent for greater productivity while maintaining excellent part surface finish. 35° helix is slightly less aggressive but are supplied with a corner radius to help break up sharp corners, distributing cutting forces more evenly and

Square End Carbide End Mills

2-Flute Square End, 30° Helix									
Cutting Dia. (in.)	Shank Dia. (in.)	Flute Length (in.)	Overall Length (in.)	Uncoated Code No.	Price \$	TiAIN Code No.	Price \$	$\$ \begin{gathered} \text { AITiN } \\ \text { Code } \\ \text { No. } \end{gathered}$	Price \$
1/4	1/4	3/4	2-1/2	103854	14.65	102810	19.98	98104608	20.75
3/8	3/8	1	2-1/2	103857	25.62	102814	33.55	55104616	34.90
1/2	1/2	1	3	103859	41.01	102818	50.06	104620	52.21
5/8	5/8	1-1/4	3-1/2	103887	79.09	102822	92.18	18104624	96.33
3/4	3/4	1-1/2	4	103889	115.95	102826	131.40	-104628	137.50
3-Flute Square End, 30° Helix									
Cutting Dia. (in.)	Shank Dia. (in.)	Flute Length (in.)		Overall Length (in.)	Uncoated Code No.	Price \$	$\$ \quad \begin{gathered} \text { TiAIN } \\ \text { Code No. } \end{gathered}$		Price \$
1/4	1/4		3/4	2-1/2	101092	14.65		102371	19.98
3/8	3/8		1	2-1/2	101097	25.62		102381	33.55
1/2	1/2		1	3	101099	41.01		102384	50.06
5/8	5/8		1-1/4	3-1/2	101101	79.09		102386	92.18
3/4	3/4		1-1/2	4	101103	115.95		102388	131.40

4-Flute Square End, $\mathbf{3 0}^{\circ}$ Helix

Cutting Dia. (in.)	Shank Dia. (in.)	Flute Length (in.)	Overall Length (in.)	Uncoated Code No.	Price \$	TiAIN Code No.	Price \$	AITiN Code No.	Price \$
$1 / 4$	$1 / 4$	$3 / 4$	$2-1 / 2$	103864	$\mathbf{1 4 . 6 5}$	102840	$\mathbf{1 9 . 9 8}$	104708	$\mathbf{2 0 . 7 5}$
$3 / 8$	$3 / 8$	1	$2-1 / 2$	103867	$\mathbf{2 5 . 6 2}$	102844	$\mathbf{3 3 . 5 5}$	104716	$\mathbf{3 4 . 9 0}$
$1 / 2$	$1 / 2$	1	3	103869	$\mathbf{4 1 . 0 1}$	102848	$\mathbf{5 0 . 0 6}$	104720	$\mathbf{5 2 . 2 1}$
$5 / 8$	$5 / 8$	$1-1 / 4$	$3-1 / 2$	103934	$\mathbf{7 9 . 0}$	102852	$\mathbf{9 2 . 1 8}$	104724	$\mathbf{9 6 . 3 3}$
$3 / 4$	$3 / 4$	$1-1 / 2$	4	103936	$\mathbf{1 1 5 . 9 5}$	102856	$\mathbf{1 3 1 . 4 0}$	104728	$\mathbf{1 3 7 . 5 0}$

General purpose, sub-micron micrograin carbide end mills ideal for deeper slotting applications where a balance of cutting edges, chip evacuation and heat dissipation is required. All end mills are center cutting and can be used for plunging applications.

3-flute end mills offer maximum chip clearance therefore reducing chip packing.
Ball end mills have a helical gash on ball end for reduced cutting force and better chip

3-Flute Square End, 40° Helix

Cutting Dia. (in.)	Shank Dia. (in.)	Flute Length (in.)	Overall Length (in.)	Uncoated Code No.	Price \$	TiCN Coated Code No.	Price \$
$1 / 4$	$1 / 4$	$3 / 4$	$2-1 / 2$	153324	$\mathbf{1 5 . 4 3}$	153374	$\mathbf{1 8 . 9 8}$
$3 / 8$	$3 / 8$	1	$2-1 / 2$	153332	$\mathbf{2 6 . 9 5}$	153382	$\mathbf{3 3 . 1 5}$
$1 / 2$	$1 / 2$	1	3	153336	$\mathbf{4 3 . 1 8}$	153386	$\mathbf{5 3 . 1 1}$
$5 / 8$	$5 / 8$	$1-1 / 4$	$3-1 / 2$	153340	$\mathbf{8 3 . 2 6}$	153390	$\mathbf{1 0 2 . 4 1}$
$3 / 4$	$3 / 4$	$1-1 / 2$	4	153344	$\mathbf{1 2 2 . 0 8}$	153394	$\mathbf{1 5 0 . 1 6}$

3-Flute Corner Radius, 35° Helix

Cutting Dia. (in.)	Shank Dia. (in.)	Flute Length (in.)	Overall Length (in.)	Corner Radius	Uncoated Code No.	Price \$	TiCN Coated Code No.	Price \$
$1 / 4$	$1 / 4$	$3 / 4$	$2-1 / 2$	0.005	153154	$\mathbf{1 5 . 4 3}$	153048	$\mathbf{1 8 . 9 8}$
$3 / 8$	$3 / 8$	1	$2-1 / 2$	0.005	153158	$\mathbf{2 6 . 9 5}$	153052	$\mathbf{3 3 . 1 5}$
$1 / 2$	$1 / 2$	$1-1 / 4$	3	0.005	153162	$\mathbf{4 3 . 1 8}$	153056	$\mathbf{5 3 . 1 1}$
$5 / 8$	$5 / 8$	$1-5 / 8$	$3-1 / 2$	0.005	153164	$\mathbf{8 3 . 2 6}$	153058	$\mathbf{1 0 2 . 4 1}$
$3 / 4$	$3 / 4$	$1-5 / 8$	4	0.005	153166	$\mathbf{1 2 2 . 0 8}$	153060	$\mathbf{1 5 0 . 1 6}$

helping to prevent wear and chipping while prolonging functional tool life. Choose 3-flute designs for slotting and profiling applications where faster chip evacuation is required while machining at higher speeds.
Titanium Carbonitride (TiCN) coating offers high surface lubricity, reduces friction, and increases chip flow. The resistance in heat and hardness allows the tool to run at 20-30\% higher machining speeds than uncoated end mills.

Ball Nose Carbide End Mills

2-Flute Ball Nose, 30° Helix								$\square \longrightarrow$	
Cutting Dia. (in.)	Shank Dia. (in.)	Flute Length (in.)	Overall Length (in.)	Uncoated Code No.	Price \$	TiAIN Code No.	Price \$	AITiN Code No.	Price \$
1/4	1/4	3/4	2-1/2	103874	18.21	102866	23.50	104658	24.67
3/8	3/8	1	2-1/2	103875	29.21	102870	37.19	104666	39.05
1/2	1/2	1	3	103876	54.36	102872	63.44	104670	66.61
5/8	5/8	1-1/4	3-1/2	103893	87.92	102876	100.99	104674	106.04
3/4	3/4	1-1/2	4	103895	129.39	102878	144.83	104678	152.07

3-Flute Ball Nose, 30° Helix

Cutting Dia. (in.)	Shank Dia. (in.)	Flute Length (in.)	Overall Length (in.)	Uncoated Code No.	Price \$	TiAIN Code No.	Price \$
$1 / 4$	$1 / 4$	$3 / 4$	$2-1 / 2$	101122	$\mathbf{1 8 . 2 1}$	102474	$\mathbf{2 3 . 5 0}$
$3 / 8$	$3 / 8$	1	$2-1 / 2$	101127	$\mathbf{2 9 . 2 1}$	102479	$\mathbf{3 7 . 1 9}$
$1 / 2$	$1 / 2$	1	3	101129	$\mathbf{5 4 . 3 6}$	102483	$\mathbf{6 3 . 4 4}$
$5 / 8$	$5 / 8$	$1-1 / 4$	$3-1 / 2$	101131	$\mathbf{8 7 . 9 2}$	102487	$\mathbf{1 0 0 . 9 9}$
$3 / 4$	$3 / 4$	$1-1 / 2$	4	101133	$\mathbf{1 2 9 . 3 9}$	102491	$\mathbf{1 4 4 . 8 3}$

4-Flute Ball Nose, 30° Helix

Cutting Dia. (in.)	Shank Dia. (in.)	Flute Length (in.)	Overall Length (in.)	Uncoated Code No.	Price \$	TiAIN Code No.	Price \$	AITiN Code No.	Price \$
$1 / 4$	$1 / 4$	$3 / 4$	$2-1 / 2$	103882	$\mathbf{1 8 . 2 1}$	102886	$\mathbf{2 3 . 5 0}$	104758	$\mathbf{2 4 . 6 7}$
$3 / 8$	$3 / 8$	1	$2-1 / 2$	103884	$\mathbf{2 9 . 2 1}$	102890	$\mathbf{3 7 . 1 9}$	104766	$\mathbf{3 9 . 0 5}$
$1 / 2$	$1 / 2$	1	3	103885	$\mathbf{5 4 . 3 6}$	102892	$\mathbf{6 3 . 4 4}$	104770	$\mathbf{6 6 . 6 1}$
$5 / 8$	$5 / 8$	$1-1 / 4$	$3-1 / 2$	103940	$\mathbf{8 7 . 9 2}$	102896	$\mathbf{1 0 0 . 9 9}$	104774	$\mathbf{1 0 6 . 0 4}$
$3 / 4$	$3 / 4$	$1-1 / 2$	4	103942	$\mathbf{1 2 9 . 3 9}$	102898	$\mathbf{1 4 4 . 8 3}$	104778	$\mathbf{1 5 2 . 0 7}$

evacuation. 4-flute ball nose end mills offer wear resistance and minimal deflection for excellent size control.
Both TiAIN and AITiN coatings are designed for difficult to machine materials. TiAIN coating reduces heat in cases where interrupted cuts may be encountered. AITiN coating is better for dry machining applications, non-interrupted cuts and for abrasive applications.

